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A formulation of hydrodynamics in terms of discrete cell variables is given, 
which is as exact as possible in the sense that, for given initial measurements 
on a system, it gives the maximum possible information on future measure- 
ments. An apparently rapidly convergent successive-approximation scheme 
is described, which requires data obtainable from short-time computer 
simulation on small systems. The lowest approximation gives the linearized 
Navier-Stokes and energy flow equations, yielding explicit expressions for 
transport coefficients. 
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1. I N T R O D U C T I O N  

This paper is concerned with the problem of hydrodynamics, i.e., of  predicting 
the motion of a macroscopic fluid, given the microscopic equations of  motion 
of its constituent particles and suitable information about  its initial state. 

This problem has usually been approached by the method of continuum 
hydrodynamics, a~ This involves writing partial differential equations [the 
continuum equations (68) and (69)] describing the time evolution of certain 
"averaged hydrodynamic variables" [density, energy density, and momentum 
density: n(r, t), e(r, t), p(r; t)]. These equations can be used to predict the 
results of  an experiment on a real system, as follows. First we devise smooth 
functions n(r, 0), e(r, 0), and p(r, 0) which somehow represent the distribution 
of discrete particles in the initial state of  the system. Then we compute the 
time evolution of these functions from the equat ions  of  continuum hydro- 
dynamics, typically by discretizing the functions on a grid and approximating 
the differential equation by a difference equation. The resulting approximation 
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to the function n(r, t) can be used to predict the results of a measurement, 
say the number of particles in some volume at time t. 

The purpose of this paper is to inquire whether the frequent translation 
back and forth between discrete and continuous variables required by con- 
tinuum hydrodynamics is really necessary or useful. The answer is found to 
be " n o . "  I develop below an alternative, totally discrete formulation of 
hydrodynamics (to be referred to a s "  cell hydrodynamics"), which is superior 
in many ways to continuum hydrodynamics: (1) It can be formulated in a 
precise way from the microscopic equations of motion of the fluid, whereas 
the continuum equations are essentially phenomenological (derivations from 
microscopic equations have been attempted, (z-4~ but seem always to bog 
down in heuristic appeals to "coarse-graining"). Well-defined successive 
approximations to the cell theory can be given, which give (in the limit) all 
possible information about the behavior of the system, consistent with one's 
initial knowledge. (2) From the point of view of actual computation, exact 
solutions to the (already approximate) continuum equations can be obtained 
from difference-equation approximations only by allowing the cell size to 
approach zero (in practice, this is usually the most serious limitation on 
accuracy). The "equations of change" of cell hydrodynamics are intrin- 
sically difference equations, and approach exactness at fixed, n o n z e r o  cell size. 

The plan of this paper is as follows: In Section 2, I use epistemological 
considerations to argue that a discrete theory is more natural than a continuum 
one, and that it should be based on a conditional probability. Such a theory 
is formulated precisely in Section 3. In Section 4 1 present a complete param- 
etrization of the conditional probability, which plausible physical arguments 
suggest to be rapidly convergent. The resulting hydrodynamic equations of 
change are determined in Section 5. Section 6 describes an algorithm for 
determining the parameters from easily calculable equilibrium correlations, 
by successive approximations. The method is simplified by symmetry con- 
siderations in Section 7. I work out the parameters explicitly in Section 8 for a 
simple but nontrivial approximation. The resulting equations of change, 
taken in the continuum limit, turn out to be the usual continuity, energy flow, 
and Navier-Stokes equations; explicit formulas appear for the thermal 
conductivity and shear viscosity [Eqs. (75a) and (75b)]. 

2. H E U R I S T I C  D E S C R I P T I O N  OF CELL H Y D R O D Y N A M I C S  

Consider a classical fluid, i.e., a large box containing many particles 
interacting according to classical2 equations of motion. I want to study the 

2 Although this paper treats only the classical case, everything but Section 6 can be 
adapted to quantum systems. 
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dynamics of  this system from an epistemological point of  view; that is, to 
ask what can be determined about  the future behavior of  the system from the 
knowledge of  its present state that can be obtained by measurement. I f  this 
knowledge were complete, so we knew the exact state of  the system (positions 
and momenta  of  all particles), the microscopic equations of  motion would 
exactly determine its state at any future time. Useful predictions cannot be 
made this way, both because our measuring instruments will not tell us the 
exact state and because we could not solve the equations of  motion if they 
did. Consistently with my epistemological point of  view, I regard the limita- 
tion on knowledge as being more fundamental than the computational limita- 
tion. I therefore concentrate on determining the form of our information about  
the system, and worry later about  computing its evolution. 

In continuum theories, this initial information consists of  " s m o o t h e d "  
distributions of  the conserved variables: n(r, 0), ~(r, 0), p(r, 0). But this is 
clearly inappropriate for an epistemological approach;  our instruments are 
not going to give us five continuous functions of  four real variables. At best 
they will give us some discrete numbers, which I must accept as the funda- 
mental variables of  the theory. Clearly, similar considerations apply to the 
information I want to predict at later times; this should also involve discrete 
variables. 

The fundamental discrete variables may be chosen in many different 
ways, and for many of  these ways theories similar to that described below 
can be constructed. For  simplicity, I shall develop the theory for variables 
chosen by partitioning the box into equal cubical cells (indexed by l). At 
discrete times t = - m r  (m an integer) we measure each cell's content of  each 
conserved quantity3: N~(-m'r), E~(-mr) ,  P~(-mr). For conciseness I will 
call these contents c~z,~, where c~ = N, E, Px, Pv, or P~. Since I will frequently 
have occasion to refer collectively to all the contents at a particular time (i.e., 
C~am for all ~ and l but fixed m), I will use the symbol c,~ for this. 

The objective of  the cell hydrodynamic theory is now to predict the 
contents at, say, t = 0 (i.e., Co) given the previous contents. Of  course I 
cannot expect an exact predict ion--I  have only partial information about 
the system. The best I can hope to do is calculate a probability distribution 
for the values of  Co, given the previous contents. One might suppose that 
this should depend only on the immediately preceding contents (cl, at 
t = - r). This would be true if cl described the system exactly. But since it 
does not, one is throwing away relevant information by ignoring c2 (at 
t = - 2~-), etc. Put differently, the ensemble of  fixed cl, c~ is smaller than the 
ensemble of  fixed c~, and therefore pinpoints the actual system we are looking 

a There is ambiguity in the assignment of the potential energy of a pair of particles to the 
Ez if they lie in different cells, which is usually resolved by assigning half to each. 
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at (which is conta ined  in bo th  ensembles)  more  precisely. 4 T h i s  leads me to 
in t roduce  a condi t iona l  p robab i l i ty  d is t r ibut ion  

O(colcl ,  c2, c3 .... ) (1) 

which is the p robab i l i ty  of  f inding the cell contents  a t  t = 0 to be Co in the 
ensemble of  fixed c l ,  c2 ..... 5 This  cond i t iona l  p robab i l i ty  Q is the basis o f  
the  new h y d r o d y n a m i c  theory,  and  is used to predic t  the evolut ion  of  a 
system. I f  we s tar t  wi th  some ini t ial  in fo rmat ion  c~, c2 .... (at  t = - T ,  
- 2 % . . . ) ,  Q determines  the d is t r ibu t ion  o f  contents  a t  t = 0, c~0. I f  this 
d i s t r ibu t ion  is a na r row one abou t  some mean  values ?~(c~, c2,...) (functions 
o f  all previous  contents) ,  we may  take  these means  as the contents  c~z0 at  
t = 0. Then the mean  value at  t = r is ?,,(c0, c~,...), which we take as 
c, ,z,-1- This p rocedure  can clearly be i tera ted  to fol low the h y d r o d y n a m i c  
evolu t ion  o f  the system indefinitely.  

Of  course i f  ?,~(c~ .... ) is really a funct ion of  an infinite number  o f  
variables ,  this is no t  going to work.  But in tu i t ion  suggests it depends  s t rongly 
on only a few variables ,  near  in space and  t ime to the var iable  c,  z0 being 
predic ted.  One can argue,  for  example ,  tha t  c,  z0 will not  depend  on a quant i ty  
measured  in the d is tan t  pas t  because tha t  quant i ty ' s  shor t -wavelength  com- 
ponents  will have re turned  to equi l ibr ium,  and  its long-wavelength  com- 
ponents  will be reflected in the more  recent  c's, which are p rope r ly  t aken  into 
account .  A n d  spat ia l ly  d is tan t  (but  recent) var iables  canno t  have an effect 
because such an effect canno t  p ropaga te  faster  than  the sound  speed. One 
could  also note  tha t  my  var iables  are  closely re la ted to those used in numer ica l  
solut ions o f  the con t inuum equat ions  discret ized on a grid (roughly,  I average 
the densi ty over a cell ins tead o f  evaluat ing  it at  the center).  The  success o f  
such solut ions in descr ibing real  systems suggests that  for large cells, only 
neares t  ne ighbor  (in t ime and space) var iables  are necessary for predic t ing  
the t ime evolut ion.  

The foregoing a rgument  has  ignored  f luctuat ions (i.e., assumed the 

4 This is an extremely important point. It is impossible to get a complete (information- 
preserving) hydrodynamic theory while assuming that the evolution of a system is 
determined by its hydrodynamic state at a single time. For example, the Boltzmann 
equation makes an assumption of this sort (that a contracted description at one time 
determines the evolution) and the Enskog treatment of hydrodynamics based on the 
Boltzmann equation makes the assumption again in further contracting the description. 
The assumption is necessary to get a differential equation out, of course, but is justified 
only in the limit that the time variation of the system is infinitely slow. The incon- 
sistency of the assumption has been called the Hilbert paradox (see Ref. 2). 

5 The mere existence of this ensemble shows an advantage over continuum theory, in 
which nonequilibrium ensembles of fixed n, ~, and p are very hard to define (see Ref. 5). 
This Q is defined precisely in Section 3. The number of times involved is not really 
infinite, but extends back as far as our measurements do. 
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conditional distribution Q of  predicted C~o is very narrow), which is justified 
in many hydrodynamic problems. In general, though, the distribution of  each 
variable c~to will have some width, and Q (which is a j o in t  distribution of 
many variables in different cells I) may impose correlations between variables. 
However, the arguments used above would suggest that these correlations are 
short-ranged 6 and that the width and correlations involving a particular c~z0 
depend only on c~,v,,, with l '  .-. l and m' .~ 0. That is, in a certain sense 
(which will be clear when I parametrize it) the conditional distribution Q is a 
reasonably simple function, short-ranged in space and time. Then, by using 
Q as the basis of the theory, the possibility exists of describing phenomena in 
which fluctuations are not negligible (turbulence, critical dynamics). This also 
produces a theory which is in principle exact, in the following sense: Take 
cl, c2 .... as initial information about a state and consider Q(co lc l ,  c~ .... ). 
Instead of finding the mean value ?,~o as before, I retain Q and call it H 1, the 
first in a series of functions H s giving the conditional probability of S 
consecutive states. Then 

H 2 ( c - 1 ,  ColCl .... ) =- Q(c_l[Co .... )O(co]cl .... ) (2) 

which is the conditional probability, given the initial information, that the 
system will evolve through the hydrodynamic states c~zo and c,,t,-1 (at t = 0 
and t = ~-). Clearly I can repeat this, defining inductively 

H S ( c l - s ,  c2 - s , . . . ,  ColCl .... ) = a (c1_s[C2_s , . . . )HS- l (C2_s  .... [cl .... ) (3) 

This gives the probability of  an entire his tory  of the system from t = 0 to 
t = (S - 1)r, given our initial measurements cl, c2 ..... But this is clearly the 
maximum information any theory could possibly predict about future 
measurements on the system, consistently with our epistemological con- 
straints, namely our incomplete initial knowledge Cl, c2 ..... Of course we are 
not likely to want to know H s completely (it is not a simple function), but its 
existence proves that whatever partial information we do want [such as 
average contents at t = (S - 1)~-] we can get from Q. 

In fact, a function like H s (with some unwanted variables integrated out) 
is the most direct possible link between theory and experiment (it predicts 
the distribution of  experimental outcomes, given the initial conditions), so it 
should really be taken as the basic goal of any calculation. 

To summarize the results of this section: I have found that by using 
discrete cell variables c~t,,, I can define a conditional probability Q(colc l ,  c2 .... ) 
which determines the exact probability distribution for the current hydro- 
dynamic variables in terms of  the past ones. I have reason to believe that Q 
is not intractably complicated, but it nonetheless determines an exact (i.e., 
perfectly information-preserving) hydrodynamic theory. Thus encouraged, 

6 But see Section 3. 
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I construct a precise definition of Q in the next section, and try to parametrize 
it in the following one. 

3. EXACT F O R M U L A T I O N  

I now seek exact definitions of  the functions discussed in Section 2. It  
turns out that the conditional probability Q(colcl ,  c2 .... ) of Section 2 is not 
as simple as was hoped; the values of C,to are correlated over long distances. 
It  is easy to see that this is a consequence of the conservation laws obeyed 
by the contents C~zo. I f  I fix cl (thus fixing the total number of particles at 
t = - r ,  N = Y.z cm~, for example), then the variables Cmo are constrained 
to add up to N, giving long-ranged correlations. ~ So I must look for variables 
at t = 0 that obey no conservation law, but determine the C~to. I t  is natural 
to choose the discrete analogs of the fluxes used in continuum theory, namely 
the transfers x,1, defined as the amount  of  ~ (i.e., number, energy, or momen- 
tum) passing through the facefdur ing  the time interval ( -  r, 0). This requires 
indexing all the square faces separating the cells of  the system, and establishing 
for each a conventional direction of "posi t ive"  flow. (In this paper I assume 
that for a face with normal in the x direction, flow toward increasing x is 
positive, etc.) The definition of x~1 is obvious for the properties carried by the 
particles: For each time a particle of  total energy E and momentum p crosses 
facef(posi t ively)  we must add 1, E, Px, P~, and Pz, respectively, to xNr, x~r, 
xpxl, xP~r, and xe~r, with these quantities to be subtracted for each negative 
crossing. But there are also contributions to Xpt and xEr due to the interatomic 
potential: For each pair of  particles and each face f intersected by the line 
segment 8 connecting them, we must add f F dt to xer and f F .v  dt to xEi, 
where F is the force due to the particle on the negative side of f acting on the 
particle on the positive side, and v is the center-of-mass velocity of the pair. 
The integral is taken over the subinterval(s) of  ( - r ,  0) during which the 
segment intersects f 

I f  the box containing my system has real boundaries, these will transfer 
energy and momentum in ways not included in the above description. To 
avoid this complication, and ensure complete energy and momentum conser- 
vation, I assume a cubical box with periodic boundary conditions. Then every 
face separates two cells of  the system; those at the apparent boundaries 
actually connect two cells on opposite sides of the system. 

7 These vanish in the infinite-system limit, but this appears to be insufficient to rescue 
the theory. 

8 One can avoid the artificiality of using line segments by letting f index all pairs of 
cells; then each particle pair contributes to only one xP1. But this greatly increases the 
number of variables and it is not clear what real benefit it confers. 



Cell Hydrodynamics: An Information-Conserving Theory 65 

The transfers can now be used to determine the t = 0 contents ea~o: 

eazo = ca,1 + ~ or(f, l)xar (4) 
f 

where the sign factor ~ is + I if l is on the positive side o f f ,  - 1 if  on the 
negative side, and may be taken to vanish if f is not a face of L Clearly the 
transfers contain more information than the contents Cazo; a theory which 
predicts them is at least as good as one which predicts c~0. 

I would like to define probability distributions for the variables x~s, 
Cal m in terms of the microscopic variables of  the system at t = 0, namely N, 
r l ,  pl ,  r2 ..... pu. Evidently N, r~ .... determine the microscopic variables at all 
times t = - m r  (through the classical equations of  motion); hence they deter- 
mine the cell contents C,zm uniquely. This defines a function caNun(rl ..... PN). 
Similarly we can calculate the trajectory from t = 0 to t = - 7 and define the 

N transfers which take place as x=r(r~ ..... PN). I will approach defining the desired 
conditional probability Q (Section 2) by first defining a general probabilty 
distribution I'M for all the content variables ca,~ at M times t = - r,..., - Mr ,  
in addition to the transfer variables x~r (referred to collectively as x). This 
requires only the fundamental assumption of equal a priori probability in 
phase space. (4) Set 

o r /  
M 

• 8 [ c o , , .  - . . . .  . p , , ) ]  ( 5 )  
at m= l  

where 
N =- ~ cram (6) 

l 

(recall emM is the number content of  cell l at t = - M r ) .  Since this distribution 
is unnormalized (and unnormalizable!), it will only be used to determine 
relative probabilities. To avoid an explosion of notation, the same notation 
is used for Dirac and Kronecker delta functions; the index c, determines 
uniquely which is meant. Similarly, integrals (below) over x~ r or e~,, are to 
be interpreted as sums if(z = N. Subscripts will be dropped when the meaning 
is obvious; for example, f dx means integration over all the xat: 

Now I can define a conditional probability 

QM(xIel,..., eM) ---- PM(X; e l  . . . . .  CM) /_j" PM(X' ; el ..... CM) dx' (7) 

which differs from the Q discussed in Section 2 in that the period of observa- 
tion is made explicit by the index M. Since QM is expected to be "shor t -  
ranged"  (hence to depend on e~m only for small m), the index M is often 
irrelevant. To be precise, for any choice of  e~m (In = 1 ..... oo), the limit 

Q(xlcl, e2 .... ) =- lim QM(X]el,..., eM) (8) 
M ~  oo 
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exists and is approached rapidly. This is the Q of Section 2, except that the 
transfers, rather than the contents directly, are predicted. 

I want to show that the conditional probability QM indeed determines an 
information-conserving theory. As suggested in Section 2, this can be done by 
defining from QM the conditional probability of S-time histories: 

HMS(Cl-s,..., ColCl .... , cM) 

= . f  aM+s-l(xlc2-~ .... , ~-~ cM)H} (C2-s ..... cole1,..., C~) 

x ~-I 3 ( c , , , , 1 - s -  c , , l , 2 - s -  ~ ( r x , , ) d x  (9) 
e~,l f 

where the induction begins with HM ~ -- 1. This gives the exact distribution 
of S-time outcomes of experiments on systems with certain M-time initial 
measurements, which is the ultimate objective of the theory. 

This paper is mostly concerned with the ordinary (nonturbulent) hydro- 
dynamic case in which fluctuations can be ignored, i.e., prob~tbility distribu- 
tions for all variables are narrow and only mean values are important. Then 
instead of QM, I require only 

[x]o - j xQ~(xlc) dx (10) 

the conditional (on C, zm) mean values of the transfers x,s. The error involved 
in neglecting fluctuations can be estimated from the cumulant (6) correlation 

=- I x"Ix='r'QM(xlc) dx - [x~r]c[x,.i.]c (1 1) 

(this is a mean square fluctuation if ~f = ~f ' ) .  The algorithm for determining 
the evolution of the system then involves iterating the "equat ion of change":  

C~o ~ c~a + ~ ~(f, 1)[x~1]~ (12) 
[ 

which gives the t = 0 contents in terms of the t = - ~- (and implicitly through 
[x]c, all earlier) contents. In the proper limit (Section 8) this becomes a 
discretized Navier-Stokes equation. 

4. P A R A M E T R I Z A T I O N  

I now have a formally exact theory of hydrodynamics, expressed in terms 
of a joint probability PM(X; C) of transfers and contents for many cells and 
times. This is of no use unless I can find a parametrization, a way of approxi- 
mating PM by an analytic expression involving a few parameters. Ideally, I 
would prefer a convergent parametrization, that is, a sequence of parametriza- 
tions PM ~ (i = 1,...) which converges to the exact PM, in the distribution 
senseF ) 
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Begin by combining the arguments of PM into a single variable: 

The number, energy, and momentum conservation laws impose linear con- 
straints on the contents c~zm, defining a linear manifold in the space of 
vectors u (the "conservation manifold," or CM). Clearly, PM(U) vanishes off 

c~,~) a factor the CM. Thus (denoting total contents by tot 

M - 1  

~(CM) --- 1-~ ~ 3(c~ - ~M,~t~ (14) 
m=l 

can be extracted from PM(U): 

PM(U) = 3(CM)SM(U) (15) 

My problem is now to parametrize Se(u),  which is less singular than PM 
but still contains all nonequilibrium behavior of the system, under physical 
conditions ranging from a dilute gas to a close-packed solid. No few- 
parameter approximation to SM can be valid for all these cases, so 1 look for 
a parametrization valid when the variables u are near their equilibrium values 
(u)  for some temperature T and chemical potential /z. As usual, ~8> these 
values are singled out by weighting the probability distribution by a factor 
e x p [ - ( E  t~ + tzNt~ This gives a distribution 

S~a(u)--- SM(u) e x p ( - - Z  totx C~M,,~] (16) 

where I have defined ,~ -= t~/kT, ;~e =- 1/kT, and ,~e =- 0. This peaks for u 
near the equilibrium means (u) ,  and there is reason to believe it is nearly 
Gaussian: In equilibrium statistical mechanics the probability distribution for 
the hydrodynamic contents of fairly large cells is known (~ to be nearly 
Gaussian, and it can be shown (9> by cluster-expansion techniques that this is 
true of the equilibrium joint distribution of hydrodynamic contents of large 
cells (at a single time) in a gas. Thus it is reasonable to hope that this is true 
for contents at different times and for transfers, so that SM(U) resembles a 
Gaussian centered at (u) ,  i.e., an exponential of a quadratic function of u. 
Clearly this can be turned into a completely general expansion of SM by 
developing the exponent in a Taylor series about (u).  Defining the deviation 
from the mean 

v-= u -  <u> (17) 

and defining a distribution PM ~ from SM ~ analogously to Eq. (15), this gives 
a parametrization 

PM ~ -- a ( C M ) e x p ( - A  ~ - Ajlvj - A~kvjv~ -- A~kzVjVkV~ . . . .  ) (18) 
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Here the index j labels the components of u [Eq. (13)] [so j = (c~f) or (~lm)] 
and the Einstein summation convention is used. Because Eq. (18) is relevant 
only on the CM, we may assume that for v orthogonal to the CM, 

~ A j k . . . v  s 0 (19) 
J 

With the assumption of symmetry under permutation of subscripts, this 
determines the parameters A~.k... uniquely. 

It is important to understand the role of the thermodynamic fields 
(temperature and chemical potential) in this theory. It is well known that 
temperature is well defined only in thermal equilibrium, and yet I am trying 
to compute the evolution of a nonequilibrium system with a theory in which 
the parameters A~.k... and (uj) depend on h. This paradox exists also in con- 
tinuum hydrodynamics, where it is a fundamental problem. In cell hydro- 
dynamics, however, the paradox can be resolved: Although A appears in the 
theory, it may be chosen arbitrarily. Each choice of A produces different means 
(uj) (hence a different definition of the deviation vj), different Taylor-series 
coefficients A}k .... but the same distribution PM. In essence, when I change A, 
I merely expand the same function in a Taylor series about a different point. 
[It is instructive to work out a one-dimensional analog S(u)  = u, where the 
logarithm of Sa(u)  = ue - ~  can be expanded about its maximum for each 
"temperature" A; this exhibits many of the features of the general problem.] 

Of course, even though A is irrelevant in principle, in practice it is 
important to make a reasonably good guess (i.e., pick T, t~ so that the corre- 
sponding thermal-equilibrium mean density and energy density are close to 
those of my actual system; if necessary, the evolution of each cell may be 
computed using a different A, which may also change with time). I f  I make 
a poor choice of A, the theory still converges exactly, but since the v's [Eq. 
(17)] are then not small, I will need many more terms in Eq. (18) to achieve 
adequate convergence. 

5. H Y D R O D Y N A M I C  E Q U A T I O N S  OF C H A N G E  

I now have a parametrization of the basic function PM of the hydro- 
dynamic theory described in Section 3. It determines parametrizations of the 
other quantities defined there, the conditional probability Qu [Eq. (7)] and 
the conditional mean transfers [x]c [Eq. (10)], which are required for actual 
hydrodynamic calculations. Rather than discuss QM, I will combine Eqs. (7), 
(10), and (16) to define 9 [x]c directly in terms OfPMA: 

tx]  = J e) ax/J PMa dx  (20) 

9 Mathematically, [x]c is a distribution over test functions f (c)  and should be defined 
more carefully, but I will just manipulate it formally here. 
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In order to use the parametrization (18) for PM a, I rewrite this in terms of 
the deviations 

)7 --- x - (x) ,  g = c - (c)  (21) 

which are the components of v [by Eqs. (18) and (17)] 

This gives 

= f 2 exp( -  Ajlv j  - A~kv,v~ ...) d ~ / f  exp( -  Ajlv j  ...) d2  (23) 

[using Eq. (18), and noting that A ~ and 3(CM) cancel]. In trying to do the 
integrals in Eq. (23), one must remember that some of them are really sums, 
which I write as integrals only for convenience. I f  my ceils are fairly large, 
however, the mean values of the integer variables (number contents and 
number transfers, Cram and xNr) are fairly large, the distributions are smooth, 
and the sum is well approximated by an integral. This can be made precise, 
for any size cell, by use of the Poisson sum formula, C1~ which replaces the 
sum by a rapidly converging series of integrals, the first of which is the one 
I would get by naively taking the integral signs in Eq. (23) at face value. In 
this paper I will do just that, noting that the corrections are small and can 
be taken into account if necessary (in fact, by the same techniques described 
below; the only change is that Aj 1 acquires an imaginary part). Then the 
integrals are easy to cope with mathematically up to the quadratic terms; all 
Gaussians can be integrated in closed form by algebraic techniques. The rest 
of the terms are small, and can be dealt with by expanding part of the 
exponential in powers of the vj: 

exp( - -  A~zvjv~vl . . . .  ) = 1 -- A~kzVsV~Vl . . . .  (24) 

This leaves me with an integral of a Gaussian times a polynomial, which can 
also be done in closed form; the problem again becomes an algebraic one. I 
shall no t  carry the terms beyond quadratic through the algebra, in order to 
arrive at useful results as simply as possible. But it seems certain they can be 
included in a consistent way; a similar expansion (restricted to variables at a 
single time) has been used by Wilson in deriving the renormalization-group 
recursion relations. <11) By including higher order terms, the present theory 
might be made useful even when the distribution is not nearly Gaussian, for 
example, for very small cells or for critical phenomena. 

Dropping therefore the third and higher order terms in Eq. (23), I may 
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simplify the notation by omitting the superscript from A 2 and denoting A x 
by B: 

[x]c = f x e x p ( -  Bjvj - Aj~v,vk) d x / f  e x p ( -  Bjv, - A,kvjvk) dx (25) 

Since the integral is over only some of the variables vj (namely the x~f) and 
not over the e~r,, it is useful to decompose the matrix A into four submatrices 
in the manner suggested by Eq. (13), 

(A x~ A= 1 
A = \AC~ Ace! (26) 

(so that A ~c has elements AgS = Ac~rx.,,,,.,), etc.). Similarly, 

(Bx) 
B = B c (27) 

(with elements B/r = B.I, Bj c = B.zm)- Then the exponent in Eq. (18) can be 
similarly decomposed: I f  we denote by v t the transpose of v and use Eq. (22), 

Aj~vjv~ = vtAv = (~t~t)~Ac x = .~tAXX~ + ~tACX~ + ~tAXC~ + UACC~ 

(28) 

Treating Btv similarly, the integrand is just a multivariate Gaussian in ~, 
which can be straightforwardly integrated ~m) by diagonalizing A xx (which is 
symmetric), giving eventually 

[:~]c = - (Axx) - I(A xcy + �89 Bx) (29) 

The fluctuations about these conditional means can also be computed [Eq. 
(11)1: 

[xx]c = [:~:~]c = �89 -1 (30) 

If  I define a matrix 

g =- - ( A X X ) - a A  xc (31) 

and observe (see Section 6) that in my Gaussian approximation B vanishes 
identically, I can rewrite (29) as 

[:7]c = g? (32) 

which determines the hydrodynamic evolution of the system. 
Computation of the evolution matrix g from (31) cannot be done by 

standard matrix techniques (even for the tiny system of Fig. 1, A xx is 10 • 10 
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Fig. I. Schematic diagram showing variables uj for system with three cells l = 1, 2, 3 
(stacked linearly so they are connected by two faces f = 1, 2), for M = 2. Each point 
(i.e., open circle) corresponds to one variable. Two are labeled, with indices j = (a, f )  = 
(E, 2) [us = xE2 --- energy transfer across face 2, from cell 2 to cell 3, during ( - %  0)] 
andj  = (a,/, m) = (N, 3, 1) (uj = cN31 = number content of cell 3 at time -~-). Dashed 
arrows indicate direction of transfers. 

and A x~ and g are I0 x 30). But the intuitive considerations of  Section 2 
suggest the A's  are short- ranged in space and t ime?  ~ I f  (Axx) -1 is also 
short-ranged,  one should be able to compute  g using only nearby  A's. I t  turns 
out  there is a simple a lgor i thm for  doing this, which is best described 
geometrically.  First, rewrite Eq. (31) as 

~, At~.~,g#k = - A X #  (33) 
J' = (aD 

Note  that  each entry Ajs, in A corresponds to a pair  o f  points in Fig. 1; 
associate Ajj, with a line connecting these two points,  as in Fig. 2. Then A xx 
connects pairs o f  points  that  are bo th  on the left (i.e., transfers);  Axc and g 
connect  points  on the left to points  on the right. Note  that  the gs,k with a 
fixed k can be computed  independent ly of  other  g ' s  [in other words, the 
matr ix  equat ion (33) can be solved independently for  each column of  g and 
A~C]. So I begin the a lgor i thm by fixing k (which I call the base point). The  
gjk I want  to calculate may  be depicted as vectors with base point  k and 
various end poin ts j .  I must  decide on a set Sk of  end p o i n t s j  for  which I will 
calculate gjk (these will be near  k in space and t ime; S~ could be just  the set 

lO Meaning a component  Ask is small unless j is close to k in space and time. Note, 
however (Section 6), that  A ~~ is not  short-ranged in space; fortunately it does not  
appear in Eq. (29) or Eq. (30). In fact these long-range problems cancel out of the 
theory completely (not just  in the special case treated here); it is not hard to see that 
all coefficients A}~ ... with j, k,... all content variables (this is the long-ranged part  of A) 
cancel out of Q~ exactly. This confirms (and makes precise) the intuitive expectation 
of Section 2 that Q is "shor t - ranged ,"  even though PM is not. 
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000 000 Fig. 2. Illustration (based on Fig. 1) of algorithm for 

determining evolution matrix g. Dashed line separates 
transfers from contents. 

for which I know Ajk). Then for j ~ S~, Eq. (33) (with the sum restricted to 
j '  E S~) is a linear relation among the gj.k with various end points j '  (in which 
presumably gj~ has the largest coefficient Ajj; all coefficients Aji. may not be 
known, but I presume the large ones are, and the rest may be assumed to 
vanish). Repeating this for a l l j  e Se gives a system of linear equations, which 
can be solved, for example, by Gaussian elimination, takingj 's  in the order of 
increasing Ajk. As the set Se becomes larger, the accuracy improves; when 
it includes allj 's in the system, the algorithm is exact. Repeating the algorithm 
for each k eventually gives the entire matrix g. 

The evolution matrix g computed by this procedure determines the 
hydrodynamic evolution of the system through Eq. (32) and the equations of 
change (12). 

6. P A R A M E T E R  D E T E R M I N A T I O N  

In order to compute the evolution matrix g by the technique of Section 5, 
I must know the parameters A}k... and <uj) of the distribution PM ~ [Eqs. (18) 
and (24)]. In a practical calculation on a macroscopic system, I want to use 
cells which are smaller than the scale on which the bulk hydrodynamic vari- 
ables are expected to change, but which are still macroscopic and contain 
very many particles. Clearly there is no point trying to calculate the distribu- 
tion Pu directly for macroscopic cells. That is essentially the same many-body 
problem I started with, merely rephrased. But as we shall see below, it is 
practical to determine the parameters of PM for small cells. And clearly these 
contain more information than does PM for large cells. In fact, there is a 
well-defined scaling 11 procedure for calculating a large-cell distribution from 
a smaller cell one. Suppose I know the parameters A and (u),  which deter- 
mine the distribution Pu(x;  c) of transfers x and contents c for cells of 

Xl The idea of scaling has been much discussed in the context of equilibrium critical 
phenomena (see Ref. 13). 
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length.L at times separated by z. Then if I want PM'(X'; C'), the probability 
of finding transfers x' and contents c' for larger cells of length 2L, I can 
compute it by enumerating all choices of x and c that give the desired x' 
and c' (clearly each x, e determines a unique x', e'; I need only add up a 
few small-cell contents or transfers to get each large-cell one) and summing 
the corresponding probabilities P~(x; c). This procedure can be turned into 
a Scaling algorithm for computing the parameters A' and (u') (which deter- 
mine PM') from the smaller scale parameters A and (u). It is also necessary 
to be able to do time-scaling. However, a detailed discussion of scaling will 
be deferred to a later paper (1~ because it turns out that a limiting case of 
the theory which is already of some practical interest (giving the Navier- 
Stokes equation and the transport coefficients) can be worked out without 
it. 

Assuming that the results can be properly scaled up, I address the 
problem of determining the parameters of the probability distribution for 
microscopic cells having a relatively small number of particles. Ideally, one 
would like to do this directly from the microscopic equations of motion. 
However, that approach may require considerable work, so I concentrate 
here on an alternative method which makes use of the already well-developed 
technique of molecular dynamics, (~5) i.e. computer simulation of the behavior 
of equilibrium systems. The idea is to use equilibrium time-correlations 
calculated by molecular dynamics to determine the parameters A~k... and (u s) 
of my theory. The distribution PM ~ parametrized by A and (u) is exactly a 
thermal-equilibrium distribution for variables x~ r and C,Zm at different times, 
so the equilibrium correlations of these variables can certainly be obtained 
in terms of A and (u). By setting these equal to the correlations determined 
by molecular dynamics, I should be able to solve for the A's (and of course 
molecular dynamics gives (u) directly). 

An observation is necessary about the general relationship between time- 
correlation functions (TCF) and hydrodynamic equations of motion. Clearly, 
the equations of motion (hence the transport coefficients) determine the fluid 
motions which are reflected in the TCF. Therefore the TCF, though they are 
much more complicated than the transport coefficients, contair~ no more 
information (at least not on a coarse scale); they therefore contain this 
information in a highly redundant way. There ought thus to be many ways 
to extract it; one is the Green-Kubo(~6) approach, expressing the transport 
coefficient as a time integral of a TCF. This is somewhat hard to apply 
because the "long-time tail" (~7) of the TCF makes it necessary to use a very 
large molecular-dynamics system which can be followed for a long time. 
It would be preferable to extract the transport coefficients from only the 
short-time, short-distance behavior of the TCF. That will be achieved by the 
present approach if the A's are short-ranged in time. 
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The t ime correlat ions obtainable  f rom molecular  dynamics are of  the 
fo rm 

<UjUk ...) =-- f ujuk ... PM~(u) d u ~  PM~ du (34) 

These can be specified more  economical ly by giving the cumulant  correlations 
Wje .... defined inductively by 

<u~u~ ...> = ~, WL~,...WLb,....... (35) 

where the sum is over  all distinct part i t ions of  the set {j, k,...} into subsets 
{a, b,...}, {a', b',...},.., with i, i ' , . . ,  elements, respectively. 12 The first o f  these 
are 

Wj 1 = (u j ) ,  W ~  = (u~uk) - ( u i ) (u~ )  (36) 

I t  is not  hard  to show that  the cumulants  obta ined by using v (the deviation 
of  u f rom equil ibrium) instead of  u in Eq. (35) or Eqs. (36) are the same 
except for the first; obviously 

(vj )  = 0 ~ Wj ~ (37) 

Below, I shall use v to compute  W ~ (i > 1). Thus  I need to calculate means 
like 

(v ,v~ . . . )  =- f P M ~ v j v k . . . d v / f  P~a~ dv (38) 

Using the paramet r iza t ion  (25) for PM ~ gives integrals of  the fo rm 

f 8(CM) [ e x p ( - A  ~ - A}v j  ... dv (39) )]vjv~ 

Treat ing these analogously  to the integrals o f  Section 5, I evaluate the sums 
over  discrete vj by the Poisson sum formula,  and retain only the leading term. 
This is equivalent  to treat ing the sums as integrals, and the Kronecker  delta 
functions as Dirac  ones. The delta funct ion on the conservat ion manifold  
can be handled by decompos ing  v into components  in C M  and its or thogonal  
complement  OC:  

v = vcM + Voc (40) 

I t  is intuitively clear that  ~(CM) is essentially 8(voc) since roe = 0 defines 
the CM.  This can be made precise by defining o r thonormal  bases for  the 
C M  and the OC,  and t ransforming to an integral with respect to these 
coordinates;  dv = dvcMdvoc. Then 3(CM) is 3(Voc) except for a constant  

12 If any of the indices j, k,... are to be taken to be equal, it is important to enumerate 
the distinct partitions before substituting values for j, k,.... The definition (35) can be 
shown to be equivalent to the standard definition. (6~ The form (35), which seems to be 
useful in physica,1 problems, I have not seen written except in Ref. 19. 
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factor, a Jacobian determinant which cancels out of the ratio (38). So the 
integral over Voc is trivial, and expression (39) becomes 

f [exp(-A A~,vj )]v~vk ... dvcM (41) 

where the integrand is evaluated at Voc = 0. As in Section 5, I can expand 
the part of the exponential beyond A 2, getting a series of integrals having the 
form (41) with only a quadratic exponent, which can be evaluated in closed 
form. In this paper, however, I drop the terms beyond quadratic, leaving 

f [exp(- A ~ - A~,vf - A~,k,VfVk,)]VjVk"" dvcM (42) 

I can now evaluate Eq. (38) by performing the simplifications (39)-(42) on 
both numerator and denominator. Since the cumulants of a Gaussian distri- 
bution vanish beyond second order, a~) I need only 

( v j v k ) = f  f [exp(--A~ A~,v~,-- A~,k,vfvk,)]vjvkdVcM) 

+ exp( -  A ~ 1 (43) - Aj,vj, - A~,k,Vj,Vk,)dvcrz 

Dropping the superscript on A 2, writing A 1 as B, cancelling A ~ and using the 
matrix notation of Section 5, this is the j, k component of the matrix 

(vv t) = f [ e x p ( - v t A v -  Btv)]vv ' dvo,,/f e x p ( - v t A v -  Btv) dVcM (44) 

All these matrices may be written either in terms of my original components 
of v (i.e., 2,r, ?~,m) or in terms of the new orthonormal bases of CM and OC. 
Clearly the latter is more appropriate for doing the integral over Vcm, which 
is defined in these bases. It can be done by the same method as in the last 
section, involving diagonalizing A. Note that A maps CM into CM and 
vanishes on OC by Eq. (26), so I can find eigenvectors which are all either 
in CM or in OC; those in OC have eigenvalue zero. Then I can do the 
integrals in (44) regarding A as a matrix on CM only [note that Eq. (19) gives 
B e CM]; the standard technique <12) gives 

(VV t) = �89 -1 (45) 

[Note this is the cumulant W 2 [Eq. (36)] because (v) = 0.] Computing (v) 
from an analog of Eq. (44) gives 

(v) = - �89 (46) 

whose vanishing determines B: 

B = 0  (=Aj  1) (47) 
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Equation (45), which determines A, may be rewritten 

<vvt>A = �89 c~ (48) 

where I cr~ is the identity matrix on CM. The linear operator equation (48) 
(which is so far defined only on CM) may be extended to all of  u-space by 
noting that both matrices on the left side vanish on OC (obviously equilibrium 
averages satisfy the conservation laws) and arbitrarily defining I c• on the 
right to vanish on OC. Thus I cM becomes a projection operator onto CM; 
if I can express this in terms of my original basis, [ may write Eq. (48) in 
this basis as 

~, Wjj,Aj,k = ~IlCM;k (49) 
j ,  

(I have replaced (vvt> by W 2 and dropped the superscript.) 
It is not hard to define an explicit orthonormal basis for CM (for ex- 

ample, by Fourier transform), say {e~}. Then the projection operator can 
be written 

I ~  ~" e qoq (50) 
q 

In principle Eq. (49) can then be solved for Ayk. In practice, I must find an 
algorithm like that of Section 5 which determines Aj.~ from " n e a r b y "  Wjr 
and Ij% M and depends on all these being short-ranged in space and time. It is 
not obvious from Eq. (50) that I ~  is short-ranged, and in fact it is not; this 
is a consequence of the conservation laws, which couple contents of cells 
over large distances. But they do not restrict the transfers, so one might hope 
that the components I ~  where j or k refers to a transfer variable [i.e., has 
the form (~f)] are short-ranged. In fact, they are not only short-ranged, they 
are trivial: 

CM C M  CM = I~atm),(c~r) 0, = 3.a' 3rr' (51) I(ay)(cam)" = I~al)(,r)' 

That is, I ~ acts as the identity matrix on vectors v whose content components 
vanish; to see this, note that such a v trivially satisfies the conservation laws, 
so v e CM and the projection I cM leaves it unchanged. 

Fortunately, thispartial  knowledge of I cM is enough to attack Eq. (49), 
because it can be solved column by column in I cM and A. That is, a column 
of I cM ( I ~  for all j ,  fixed k) determines the same column of A. So I can 
obtain Ajk only when k is a transfer variable; in the notation of Section 5, 
I get A ~ and A r (and A ~ since A is symmetric) but not A ~. Fortunately, 
as observed in Section 5, this is all I need. 

The algorithm for solving Eq. (49) is exactly analogous to that of Section 
5, and may be described geometrically in terms of Fig. 3. After fixing a base 
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Fig. 3. Illustration (based on Fig. 1) of algorithm for 
determining parameters A. 
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point k (which must be on the left, i.e., a transfer) I decide what set Se of end 
points j to compute Aje for (perhaps those for which Wje is known; note 
that j is allowed to be anywhere, not just on the right as shown in Fig. 3). 
For each j e Sk, Eq. (49) (summed over j '~  Sk) is a linear relation among 
the Ark. Using Eq. (51) for the inhomogeneous terms I cM, this system of 
linear equations can be solved for Aj,k. Doing this for all k = (~f) yields all 
components of A needed to determine the hydrodynamic equations of change 
of Section 5. 

The net result of this section has been to give an algorithm for determin- 
ing from the molecular dynamics data W ~ (the cumulant equilibrium time- 
correlations, used here only for i ~< 2) the parameters A and <u) needed for 
computing (by the method of Section 5) the hydrodynamic evolution of a 
system. 

7. INFINITE-SYSTEM L I M I T ;  SYMMETRY 

The theory developed in the previous sections describes a system with 
periodic boundary conditions. It is physically relevant only in the infinite- 
system limit, which possesses complete rotational and translational symmetry. 
Clearly this simplifies the specification of the parameters Ajk and the cumu- 
lants Wjk; these depend only on the relative positions of the cells referred to 
by the indices j and k. 

To make this precise, consider the rotational and translational invariances 
of the system. Since these must preserve the cell structure, the invariance 
group G is that of a simple cubic lattice: the product of the octahedral group 
(Oh in Schoenflies notation) and the group of translations whose components 
are multiples of L. The action of a transformation R E G on an index j 
(either a,l, m or a , f )  can be defined in an obvious way: R takes/into some 
other cell and f into some other face, and takes c~ into itself if a is N or E. 
If a is Px, Pu, or P~, then R (whose rotational part determines a unique 
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permutation of the x, y, and z axes) performs this same permutation on 
Px, Pu, and Pz. 

Clearly, transforming both indices of Ajk should not change its numerical 
value, except perhaps its sign. The sign changes, for example, if a is Px, 
and R takes the x axis into the negative y axis. A sign change can also arise 
in rotating a face, if the conventional direction of positive flow is thereby 
reversed. If  I denote the product of these signs by p(R, j )  (=  + 1), the trans- 
formation law for the parameters A~k... can then be shown to be 

A}~... = A~,jtk,.. .p(R, j )p (R ,  k)  ... (52) 

To exploit the fact that A is also symmetric under subscript permutation, 
define a group G~ which is the product of the rotation-translation group G 
and the permutation group of i indices. This group acts on index lists (j, k,...) 
and determines equivalence classes of such lists. Label the classes by n --- 
1, 2, 3 .... and choose from the nth class (whose lists have length i[n], say) 
an arbitrary (but fixed) representative (j, k,...)[n]. Then the number 

ttnJ (53) A[n] =-- A(j.~,...)r~l 

determines [via Eq. (52)] A for all other index lists ( j 'k '  ...) in the nth class: 

A~,,k,...) = p(j 'k '  ...)A[n] (54) 

Here p(j 'k '  ...) is defined to be the product of the p's in Eq. (52) for the R 
taking ( j 'k '  ...) into ( jk  --.)In]. Thus the entire array Ajk... can be represented 
in terms of a much smaller collection of numbers A [n], one for each equiv- 

Y 

4 ~ z J  ~x 

Fig. 4. Pictorial representation of some equiva- 
lence classes of index lists, numbered as in Table 
IB. Number, energy, and momentum variables 
are represented by open circles, stars, and appro- 
priately directed arrows. Light lines indicate 
direction of transfers (across right-hand face). 
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alence class of index lists. Some of these equivalence classes are listed in 
Tables IA and IB; a few are depicted pictorially in Fig. 4. It is very useful to 
visualize an equivalence class as a cluster of i objects, bound rigidly to each 
other but capable of being relocated on the cell lattice by rotations and 
translations. Then the standard representative of the class corresponds to a 
particular unique position and orientation in the lattice, and all other 
positions and orientations correspond to other members of the class. 

The other quantities in the theory are similarly simplified by symmetry; 
the cumulant correlations WJk... can be represented by a smaller set of num- 
bers W[n], and the evolution matrix gj~ by g[n] (note that i[n] must be 2 
here). 

I now want to incorporate symmetry into the algorithms of Sections 5 
and 6. Some reflection on the effect of symmetry on the algorithm (Section 5) 
for computing the evolution matrix g from A shows that we should proceed 
as follows: Pick an equivalence class no for the base point (demanding 
/[no] = 1 and that the representative index k - j[no] be a content variable). 
Decide on a set S(no) of equivalence classes n2 for which we wish to calculate 
g[n2]. Thinking of n2 as a relocatable cluster of two points, we require that 
one point be locatable at k and that the other (the end point) be a transfer 
variable. (The set of possible positions j for the end point is the set Sk of 
Section 5.) Then pick some nl E S(no), and choose a particular way of 
attaching it to the base point k, i.e., choose a particular (j, k) in class nl. 
For each no and n~ we get a linear equation in the g[n=] [n~ ~ S(no)]. To get the 
coefficient ofg[n2] for some particular n=, find all possible ways of relocating 
the cluster n2 so one point remains the base point k, i.e., all ways of pivoting 
n2 about the base point, giving different end pointsj ' .  For eachj ' ,  determine 
the equivalence class n of (j, j ') ,  and include a term [derived from Eqs. (33) 
and (54)] 

p(j, }')pCi', k)A [n]g[n2] (55) 

in the linear equation. The inhomogeneous term on the other side is 

- p(j, g)A[nd (56) 

Repeat this for every nl and solve the resulting equations for g. Then start 
over with a new base point no, eventually getting all components of g. 

The algorithm for computing A from W (Section 6) is very similar. This 
time choose the base point no so its representative k is a transfer variable. The 
classes n2 E S(no) should have base point k, but any end point is allowed. 
Determine a linear equation for each nl ~ S(no) (located at j, k) by taking 
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Table IA. Cells and Faces Used in Calculat ion of Section 8 

Cells 
Faces 

Coordinates of 
Label l center Label f Cells connected a 

1 (0, O, O) 1 1, 2 
2 (L, O, O) 

Conventional direction of positive flow is from the first cell 
listed to the second. 

Table lB. Equivalence Classes of Index Lists a 

Label n 
Representative list 

Length i[n] (jk...)[n] 

1 1 
2 1 
3 1 
4 1 
5 1 
6 1 
7 1 
8 2 
9 2 

10 2 
11 2 
12 2 
13 2 
14 2 
15 2 
16 2 
17 2 
18 2 
19 2 
20 2 
21 2 
22 2 
23 2 
24 2 

(NI) 
(El) 
(cA) 
(e,1) 
( N l l )  
(Ell) 
(P~l l )  
(N1), (N1) 
(El),  (El)  
(P:,I), (P~I) 
(Pyl), (P~I) 
(N1), ( N i l )  
(N1), (E l l )  
(N1), ( P A l )  
(El), ( N l l )  
(El),  (E l l )  
(El),  (P:A 1) 
(P:A), ( N l l )  
(P~I), ( E l l )  
(Pxl), (P~l l )  
(P,1), (Pul l)  
(Nl l ) ,  (N11) 
(El l ) ,  (E l l )  
(P~I 1), (P~I 1) 

All classes of one-index lists are given, with those two-index lists 
meeting the criteria described in the text for Win] to be im- 
portant. Seven are omitted because W[n] = A[n] = 0 by 
symmetry [Eq. (52) gives A = - A  for some R]. 
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all n2 e S(no) and pivoting each in all possible ways about the base point; for 
each position (j ' ,  k), determine the class n of  (j,j ') and add 

p(j, j') p(j', k) Win]Ainu] (57) 

to the equation, which has an inhomogeneous term 1/2 on the other side only 
i f j  = k (i.e., nl has the same index twice). 

The end result of  these two algorithms is g[n]. To calculate the evolution 
of a system, one must compute the conditional mean transfers, which are 
expressed [Eq. (32)] in terms of gj~. The procedure for determining a mean 
transfer [;~j]~ from gin] is as follows: Determine the class no of the base 
pointj .  Define the set S(no) of  equivalence classes n for which g[n] is important 
(these should have i[n] = 2 and be locatable on the base point j, with the 
end point k being a content variable). For  each n ~ S(no), and each way of  
pivoting n about j (i.e., each end point k) there is a term 

p(j, k)g[n]Y~, (58) 
in [ffj]c- 

All these algorithms will be carried out for a simple case in the next 
section. 

8. APPLICATIONS:  N A V I E R - S T O K E S  A N D  
ENERGY FLOW EQUATIONS 

The theory described in the previous sections is best suited for machine 
calculation, la especially if small cells are used so correlations extend over 
several cells. However, it turns out that simple approximations can be 
worked out by hand, so in this section I work out the theory for the simplest 
reasonably nontrivial approximation. It  turns out that the circumstances 
(described below) under which this approximation is good are exactly those 
under which one intuitively expects the phenomenological linearized equa- 
tions of continuum hydrodynamics (in a discretized form) to be valid. Since 
the resulting equations are, in fact, such discretized continuum equations (the 
continuity, Navier-Stokes, and energy-flow equations), in some sense this 
constitutes an a priori derivation of the continuum equations.. Discussion of  
the exact sense in which they can be proved (or are true) must await analysis 
of their scaling properties. 

Consider then the infinite-system limit described in Section 7 (i.e., con- 
sider fluid behavior far from boundaries in space and initial conditions in 
time). Assume the cells are large enough that the smoothing of the number 
variables and the restriction to Gaussian correlations (i ~< 2) of Sections 5 
and 6 are valid (i ~< 2 also requires assuming deviations from equilibrium to 

13 In fact a very similar algorithm, in a completely different context, has been programmed 
and used by the author (see Ref. 19). 
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be small). Assume also that fluctuations [Eq. (30)] are small enough (the 
system is not, for example, near a critical point) that only the mean values 
[Eq. (32)] need be computed, via the evolution matrix g [Eq. (31)]. (Clearly, 
if any of these assumptions were violated, one could not expect the linearized 
continuum equations to apply.) Under these circumstances, equilibrium 
statistical mechanics ~9) shows that the cumulant correlation W~1.~,~.1 is much 
smaller 14 for 1 ~ 1' than for I = l', that is, that content variables in different 
cells are weakly correlated. It is likely that this is also true of transfers: 
W~r, ,.~, is small un less f  = f ' .  In this paper I make the further assumption 15 
that ~ = ~' in the above W's. As for correlations between contents and 
transfers, the largest will clearly be between c,zl and x,,t ,  where f i s  a face of 
cell l; I assume these may be important for all c, and c~'. These considerations 
determine which index pairs jk give significant Wj~; all equivalence classes 
of such pairs are listed in Table IB (n = 8 ..... 24). Since W determines A 
(Section 6) and g (Section 5), I assume Ajk and gig also are important only 
for these pairs. This uniquely determines the index-pair sets S(n) of Section 7 
(i.e., S~ of Sections 5 and 6), which determines my approximation uniquely 
via the algorithms of Section 7. 

Application of the algorithms is now completely mechanical, and pro- 
ceeds as follows. In calculating A from the equilibrium correlations W, the 
possible classes of base points are no = 1, 2, 3, 4. Take no = 1 first, so k = 
(N1). Scanning Table IB for two-index lists containing k shows S(no) = 
{8, 12, 13, 14}. Obtain first the linear equation [Eq. (62a) below] for na = 8; 
for this class the end point j is superimposed on the base point k as in Fig. 5a. 
To get the term corresponding to n~ = 8, attach n2 to the base point; there is 
only one way to do this, givingj, j '  = (N1)(N1), again in class 8 (so n = 8). 
The term (57) is then 

WsA8 (59) 

(In this section I write W8 for W[8], since the argument has no subscripts.) 
The sign factor is + 1. For the next terms na takes the next value in S(no), 
n2 --- 12. Attaching n2 at the base point k, its end poin t j '  may pivot into two 
positions,j '  = (N11) or (N21), as shown in Figs. 5b and 5c, respectively. The 
first givesj, j '  = (NI)(N11), which is the standard representative of class n = 
12. The sign is + 1, so our term is 

W12Aa2 (60) 

The secondj '  (Fig. 5c) gives (j, j') = (N1)(N21), which is also in class n = 12 
but requires a nontrivial rotation R (perhaps by ~r about an axis in the face f )  

xa By one or more powers of the ratio, range of interparticle potential/L. 
15 Removing this assumption adds only two index pairs to Table IB (number-energy 

correlation~ for contents and transfers), somewhat increasing the algebraic labor. 
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(o) ~ k , j ,  

(b) ~ k , j  

Fig. 5. Visual aids for deriving (a) Eq. (59), (b) Eq. (60), 
(c) Eq. (61). Symbols have meanings of Fig. 4. 

(c) 
ceil 1 cell 2 

to reach its s tandard position. This reverses the conventional  direction of  
positive flow through the face, introducing a minus sign into p(j , j ' )  as 
discussed in Section 7. But since p(j', k) is identical, the signs cancel and we 
have another  term 

+ W12A12 (61) 

Proceeding in this manner  through n2 = 13 and 14, and including the in- 
homogeneous  term 1/2 ( s ince j  = k for  n~ = 8 ) ,we  get the n~ = 8 equat ion 

WsA8 + 2W~2A12 + 2WlaAI3 + 2W14A~ = 1/2 (62a) 

Turning  next to the equat ion for  n~ = 12, we find a term W~2As for n2 -- 8. 
The next value n2 = 12 gives a cluster which can be pivoted in two different 
ways, giving (jj') = (N11, N11) and (N11, N21). The former  is in class n = 22, 
giving a term W22A12. The class of  the latter is not  listed in Table  IB because 
it does not  satisfy the impor tance  criteria established at  the beginning of  this 
section. The  n2 = 15 and 18 terms vanish similarly, and the inhomogeneous  
term vanishes since the indices of  n~ are distinct, giving 

W12A8 + W22A12 = 0 (62b) 

Similarly nl = t3 and  14 give 

W13A~ + W23Ai3 = 0 (62c) 

W14A8 + W24A~4 = 0 (62d) 
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We now have four equations in the four unknowns As, A12, A13, and A14. 
These can be solved to give 

A8 = 1/2(W8 - 2 W ~ 2 / W 2 2  - 2 W ~ 3 / W 2 3  - 2 W ~ 4 / W 2 ~ )  (63) 

and similar equations for the other variables. We now have the A's correspond- 
ing to no = 1. Taking no = 2 gives S(2) = {9, 15, 16, 17}, hence equations for 
Ag, A~5, A~6, and A17. Then S(3) = {10, 18, 19, 20} and S(4) = {11, 21} give 
the remaining six variables. (As discussed in Section 6, A22, A23, and A24 
are not computed.) 

Next we must carry out the algorithm for computing g from A. This is 
quite simple, because most of the n's we get couple two different transfers, 
and such A, have been presumed to vanish. Each equation is left with only 
one homogeneous term; the first (using no = 5, n~ = 12) is 

A~g12 = - A12 (64) 

This gives immediately 

g~2 = - A 1 2 / A 8  = + W12/W22 (65a) 

[Using Eq, (62b); note it was unnecessary to solve for the A's, in this simple 
case.] It turns out that 

g~3 = W~3/W23 (65b) 

and the equations for g~  ..... g21 are similar; the subscripts in the denominator 
are 24, 22, 23, 24, 22, 23, 24, and 24, respectively. 

We can now calculate the evolution of a system by determining the 
conditional mean transfers [Eq. (32)]. Equations for these are obtained from 
the last algorithm of Section 7. There are four nonequivalent transfers 
(no = 1, 2, 3, 4). Taking no = 1 (the class of number transfers), we compute 
the representative transfer [~j]c (with j = N1) across face 1. (The equations 
for other faces will be obtainable by translation and rotation.) The relevant 
index pairs comprise S(1) = {12, 13, 14}. The first class n = 12 can be pivoted 
in two ways about j (corresponding to Figs. 5b and 5c except for labeling), 
giving k = (N11) and (N21). The corresponding terms (58) are 

+g~2~z~l~ - g12~N2~ (66) 

[the minus sign arises from the same rotation discussed in connection with 
Eq. (61)]. The n = i3 and 14 terms are obtained similarly, giving the no = 1 
equation 

[xN1]~ = g12(cN~l - cN2~) + g13(~E~t - ~s21) + g~(~e~,l~ + ~e,~2~) (67a) 
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(The different sign in the third term arises because the rotation reverses the 
x momentum.) Letting no = 2, 3, and 4 gives the equations 

[2~1]c = gls(ENz~ " EN2~) + gz6(EE~ -- EE2~) + glT(Eex~z + Ep=2z) (67b) 

[-~p=l]c = gz8(Ez~ + EN2~) + g~9(EE~ + EE2~) + g2o(Ee=z~ -- Ee=21) (67C) 

[2e~1]~ = g2z(~P~l~ - Ee~2z) (67d) 

These equations determine the evolution of the system via the equations of 
change (12). 

The above equations are the main result of this paper, and constitute a 
solution to the problem posed in the introduction, namely the construction of 
a consistent, completely discrete theory of hydrodynamics, which becomes 
exact as more terms are included. However, it is interesting to look at con- 
tinuum approximations to the theory to see whether the phenomenotogical 
continuum equations are obtained in the appropriate limit. Consider the 
linearized continuum equations for density n(x, t), energy density E(x, t), 
and monentum density p(x, t), in the following form~6: 

dn 
= - V.j (continuity equation) (68a) 

d~ 
= - V.q (energy-flow equation) (68b) 

d__p = _ V.17 (Navier-Stokes equation) (68c) 
dt 

The particle flux j, energy flux q, and momentum flux tensor U are given in 
terms of n, E, and p by 

j = (1/m)p (69a) 

q = - K  VT(n, ,) + (, + IIo)p/nm (69b) 

17 = Iiol - 2hA - (~ - ~ )  tr A 1 (69c) 

Here, m is the particle mass, K is the thermal conductivity, T(n, ~) is the 
temperature (equilibrium equation of state), 17o is the isotropic pressure, r/is 
the shear viscosity, ~ is the bulk viscosity, and A is the symmetric part of  the 
tensor Vp/nm, with trace tr A. Note that p/nrn is just the local fluid velocity. 

To relate my discrete equations (67a)-(67d) to these continuum equations, 
I must express the content and transfer variables approximately in terms of 

x6 These are obtained from the full nonlinear equations c*) by expanding in the deviation 
from equilibrium and dropping nonlinear terms. The form used here has been given 
by Kadanoff and Martin (see Ref. 20). 



86 P. B, Visscher 

the continuum functions n(x, t), etc. Evidently the number contents at t = - r 
of the two cells listed in Table IA are 

cNll ~ Lan(0, - z )  (70a) 

cN2~ ~ Lan(L~, - z )  (70b) 

Similar relations give the energy and momentum contents. The number 
transfer across the face separating these cells is 

~NI Z Lz'rj~(�89 --�89 (71a) 

and the other transfers are similarly (omitting space and time arguments) 

~E1 "~ L2rq~ (71b) 

xv~l ,~ L2"clI~ (71c) 

2v~1 ~ L%'IIx~ (71d) 

Similar equations for transfers across other faces involve other components 
of q and 1-1. Application of Eqs. (70)-(71) to the discrete equations of change 
(12) gives a finite-difference version of the continuum equations of change 
(68a)-(68c). Since this is quite straightforward, I will concentrate on the more 
interesting question of whether the transfer equations (67a)-(67d) reduce to 
the continuum flux equations (69a)-(69c). To rewrite Eqs. (67a)-(67d) in terms 
of continuum variables using Eqs. (70)-(71), it is necessary to relate ~7 and 
to x and c [Eq. (21)] using the means (x)  and (c) (these are all functions of 
the chemical potential t~ and the temperature T). Evidently all the (xj) vanish 
by symmetry except for j = Pxl. Denoting the mean isotropic pressure 
(IIxx) by (II) ,  we see from Eq. (71c) that 

Similarly, 

(xpx~) = L2z(II~ (72a) 

cml = L3(n) (72b) 

CEz1 = L3(~) (72c) 

Note that (cex~l) = 0 by symmetry. In Eq. (67a) the means cancel in the first 
term, which is a finite-difference approximation to g~2L ~(L3n)/~x (evaluated 
at the face center). The second term is similar. In the third term the means 
vanish, leaving 2(L~px) to lowest order in L. So Eq. (67a) becomes 

jx = --(glzL2/r) On/Ox -- (gI3L2/T) ~,/Ox + (2g~L/r)px 

The rotated equations for the other components give 

] = -(g~zLZ/.r)Vn - (g~aL2/~)VE + (2g~L/T)p (73a) 
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Similarly Eq. (67b) becomes 

q = - ( g z s L 2 / ~  -) V n  - ( g z 6 L 2 1 r ) V e  + (2gzTL/~')p (73b) 

The equations for the momentum fluxes obtained from Eqs. (67c) and (67d) 
a r e  

II~x = ( I I )  + (2gzBL]'r)(n -- ( n ) )  + (2g~oL]z)(e - ( , ) )  - (g2oL2/r)  a p A a x  

nx~ = - (g~L2 /O @~/ax 

Writing rotated equations for equivalent components gives the tensor equa- 
tion 

II~j = [(II) + (2g~BL/z) (n  -- ( n ) )  + (2gzgL/'r)(~ - (E))] 3~i 

- (g2zL~/-r) V , p j  - (g2o - g2~)(L2/"r) 3,, V,p ,  (73c) 

In comparing Eqs. (73a)-(73c) to the phenomenological equations, it is 
useful to have order-of-magnitude estimates of the coefficients (in parentheses). 
These are hard to guess for large cells but easy for small cells with L ~ mean 
free path ~ interparticle distance, and z ~ mean time between collisions (I 
assume a liquidlike density). Of course Eqs. (73a)-(73c) are not very accurate 
for such small cells, but the coefficients should have the correct order of 
magnitude. The contents are roughly N ,,~ 1, E ~ mVo 2, P ,-, m v o ,  where 
v0 is the mean thermal velocity (so E ,,~ k T ) ,  and the transfers are of the 
same order. Simply multiplying these estimates in pairs gives me estimates 
of all the correlations W. Letting r o t  " L ,  we see [using Eqs. (65a) and (65b)] 
that the coefficients in Eq. (73a) are of orders L v o ,  L / m v o ,  and 1/m, respec- 
tively. In a system in which the mean free path L is very much smaller than 
the scale of variation of n, ~, and p (the hydrodynamic limit) the factors of 
L make the first two terms negligible. Thus Eq. (73a) becomes exactly the 
continuum equation (69a) if  

2gz4L/~" = 1 /m  (74a) 

Some insight into the first two terms can be gained by considering a steady- 
state system with p = j = 0; then the linear combination of Vn and V~ in 
Eq. (73a) must vanish exactly. Also, the pressure should be constant: 

0 = v ( n >  = ( a < n > / a n ) v n  + ( a < I I > / & ) w  

(Assume the equilibrium mean ( f I )  has been expressed as a function of n 
and E.) This suggests that the two linear combinations are proportional, i.e., 

gz2L2/'r = • a<n>/an (74b) 

gzaL2/~ - = Z a<n>/a~ (74c) 

for some transport coefficient y which is very small, but perhaps not always 
negligible in non-steady-state systems. 
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Next, comparing Eqs. (73b) and (69b), we see that they are identical if 

gl~L2/.r = K ~T/~n (74d) 

g~6L2/7 . = K ~T/a ,  (74e) 

2g12L/'r = ( ( , )  + ( I I ) ) / ( n ) m  (74f) 

Again the first two terms are much smaller than the third, but this time they 
are observable because they need not cancel when the third term vanishes, as 
in a heat conduction experiment. The coefficient K may be obtained from 
either of the equations in terms of  molecular-dynamics data [see Eq. (75a) 
below]. 

Turning to the last equations (73c) and (69c), we see the first terms 
agree if 

2g~sL/'r = ~ ( I I ) / ~ n  (74g) 
2glgL/r  = 0(H) /~ ,  (74h) 

This illustrates the observation of Section 4 that if we use inappropriate 
equilibrium parameters /~ and T, thereby getting the wrong pressure (FI), 
the theory compensates automatically (in this approximation, to first order 
in n - (n)  and ~ - (~)). The second terms require 

g21L2/'r = 2~ / (n~m (74i) 

which gives the shear viscosity in terms of molecular-dynamics data [Eq. 
(75b)]. The third terms show that g2o is related to the bulk viscosity. However, 
the terms are not identical. In fact, even the second terms are not identical if 
the flow is rotational (so Vp is not a symmetric tensor). These problems can 
be traced to the fact that some terms in the finite-difference form of Eq. (69c) 
require index pairs not included in the present very limited set (Table IB). 
A proper treatment of rotational flow and bulk viscosity probably requires 
additional index pairs. 

An essential result of this section has been the emergence of the two 
most important transport coefficients K and V in terms of molecular-dynamics 
correlations. Explicit formulas may be obtained from Eqs. (65), (74e), and 
(74i): 

K = (L2/~-) (~T/~)-  1(W16/W23) (75a) 

71 = (L2/~)( �89 (75b) 

In Eq. (75a), W16 is the cross-correlation between the energy content of a 
cell and the energy transfer out of it in time z, and W23 is the mean square 
fluctuation of the content; these are depicted in Fig. 4. Of course the form 
(75) cannot be exact unless L, ~---~ ~ ;  its significance for finite L and ~- is 
that it is the first of a sequence of approximations which can describe the 
evolution exactly. 
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9. C O N C L U S I O N  

I t  has been shown tha t  cell hyd rodynamics  is bo th  more  na tu ra l  theo-  
ret ically and  more  useful computa t iona l ly  than  con t inuum theories for  
descr ibing the behavior  o f  a classical fluid system. I t  appears  very l ikely tha t  
this is true o f  macroscop ic  physical  systems in general ,  and  tha t  cell theories 
will prove  useful for  descr ibing quan tum systems, charged systems (which 
require  a cellular  t r ea tment  o f  e lec t romagnet ic  theory),  etc. 
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